Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Environ Manage ; 73(1): 259-273, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37667018

ABSTRACT

The jurisdictional approach concept emerged in response to the widespread failure of sectoral forest conservation projects. Despite its increasing popularity, understanding jurisdictional approach outcomes is challenging, given that many remain in either the formation or implementation stage. Furthermore, diverse stakeholders hold different perspectives on what exactly a jurisdictional approach is intended to pursue. These different perspectives are important to unravel, as having a shared understanding of the outcomes is important to build the critical support needed for it. This study aims to add to the limited evidence with a case study in Sabah, Malaysia, which is committed to addressing a leading deforestation driver (palm oil) through sustainability certification in a jurisdiction. We used Q-methodology to explore stakeholder perceptions, revealing three distinct perspectives regarding what outcomes jurisdictional approaches should pursue. We asked about outcomes achievable within ten years (2022-2032) and considering real-world constraints. We found different perspectives regarding economic, environmental, governance, and smallholders' welfare outcomes. However, we found consensus among stakeholders about some outcomes: (i) that achieving zero-deforestation is untenable, (ii) that issuing compensation or incentives to private land owners to not convert forests into plantations is unrealistic, (iii) that the human well-being of plantation workers could improve through better welfare, and (iv) the free, prior and informed consent given by local communities being required legally. The findings offer insights into key stakeholders' perceptions of the deliverables of jurisdictional approaches and the difficulty of achieving its objectives under real-world constraints.


Subject(s)
Conservation of Natural Resources , Forests , Humans , Malaysia , Palm Oil
4.
Ambio ; 52(7): 1282-1296, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37087698

ABSTRACT

Sustainable peatland management is a global environmental governance challenge given peat's carbon storage. Peatlands worldwide are sites of contested demands between stakeholders with distinct management priorities. In the United Kingdom, peatland management is a focus of political interest for nature-based solutions (NBS), causing tensions with land managers who feel their traditional knowledge is undervalued. Using Q-method (a semi-quantitative method for clarifying distinct viewpoints) with estate managers, gamekeepers, farmers, and employees of land-owning organisations, we explored perceptions around changing upland management in the Yorkshire Dales. Land managers hold strong values of ownership, aesthetics, and stewardship. The prospect of changing management causes fears of losing these relational values alongside instrumental values. Yorkshire Dales stakeholders agreed on NBS aims (reducing flooding, limiting wildfires, protecting wild birds), but disagreed on methods to achieve these. Our research supports engaging local stakeholders at all stages of peatland protection schemes to minimise resentment towards top-down management.


Subject(s)
Conservation of Natural Resources , Wildfires , Humans , Environmental Policy , United Kingdom , Carbon , Soil
5.
Science ; 379(6630): eabp8622, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36701452

ABSTRACT

Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.


Subject(s)
Carbon , Conservation of Natural Resources , Rainforest , Biodiversity , Carbon Cycle , Brazil
6.
Conserv Biol ; 36(6): e13970, 2022 12.
Article in English | MEDLINE | ID: mdl-35713105

ABSTRACT

Reducing emissions from deforestation and forest degradation (REDD+) projects aim to contribute to climate change mitigation by protecting and enhancing carbon stocks in tropical forests, but there have been no systematic global evaluations of their impact. We used a new data set for tropical humid forests and a standardized evaluation approach (based on pixel matching) to quantify the performance of a representative sample of 40 voluntary REDD+ projects in 9 countries certified under the Verified Carbon Standard (VCS). In the first 5 years of implementation, deforestation within project areas was reduced by 47% (95% confidence interval [CI]: 24-68) compared with matched counterfactual pixels, and degradation rates were 58% lower (95% CI: 49-63). Reductions were small in absolute terms but greater in sites located in high-deforestation settings and did not appear to be substantially undermined by leakage activities in forested areas within 10 km of project boundaries. At the 26th Conference of the Parties of the United Nations Framework Convention on Climate Change, the international community renewed its commitment to tackling tropical deforestation as a nature-based solution to climate change. Our results indicate that incentivizing forest conservation through voluntary site-based projects can slow tropical deforestation and highlight the particular importance of prioritizing financing for areas at greater risk of deforestation.


Evaluación Global de la Efectividad de proyectos REDD+ en la Reducción de la Deforestación y Degradación en el Trópico Húmedo Resumen Los proyectos para la reducción de emisiones derivados de la deforestación y degradación de bosques (REDD+) tienen como meta contribuir a la mitigación del cambio climático al protejer y  fomentar la disponibilidad de carbono en bosques tropicales, pero a la fecha no se han realizado evaluaciones globales sistemáticas sobre su impacto. Utilizamos bases de datos recientes sobre bosques tropicales húmedos y un método estandarizado de evaluación (basado en 'emparejamiento' [matching] de pixeles) para cuantificar el desempeño de una muestra representativa de 40 proyectos voluntarios REDD+ , localizados en 9 países y certificados bajo el estándar Verified Carbon Standard (VCS). En los primeros 5 años de implementación, la deforestación en las áreas de los proyectos disminuyó en 47% (IC 95% 24-68) en comparación con los pixeles contrafactuales correspondientes, y las tasas de degradación fueron 58% menos (IC 95% 49-63). Las reducciones fueron pequeñas en términos absolutos pero mayores en sitios con tasas de deforestación elevadas, y no parecieron ser afectadas sustancialmente por efectos de fuga (leakage) en áreas boscosas en un radio de 10 km de los límites del proyecto. En la COP26, la comunidad internacional renovó su compromiso de afrontar la deforestación tropical como una solución al cambio climático basada en la naturaleza. Nuestros resultados indican que incentivar la conservación de bosques mediante proyectos locales voluntarios puede disminuir la deforestación tropical, y resaltan la importancia de priorizar financiamiento en áreas con un mayor riesgo de deforestación.


Subject(s)
Conservation of Natural Resources , Forests , Climate Change , Carbon
7.
Glob Chang Biol ; 26(2): 319-321, 2020 02.
Article in English | MEDLINE | ID: mdl-31729092

ABSTRACT

This article clarifies the different types of fire in the Amazon, their different drivers and the positive feedbacks that can lead to more fires in the region. It then explores evidence regarding the peak in active fire detections in August 2019, showing that these were linked to the highest levels of deforestation since 2008. Finally, we examine the solutions needed to reduce the prevalence of uncontrolled or illegal fire in the Brazilian Amazon.


Subject(s)
Conservation of Natural Resources , Trees , Brazil
8.
PLoS One ; 11(2): e0149292, 2016.
Article in English | MEDLINE | ID: mdl-26886207

ABSTRACT

Tropical forests are experiencing a growing fire problem driven by climatic change, agricultural expansion and forest degradation. Protected areas are an important feature of forest protection strategies, and sustainable use reserves (SURs) may be reducing fire prevalence since they promote sustainable livelihoods and resource management. However, the use of fire in swidden agriculture, and other forms of land management, may be undermining the effectiveness of SURs in meeting their conservation and sustainable development goals. We analyse MODIS derived hot pixels, TRMM rainfall data, Terra-Class land cover data, socio-ecological data from the Brazilian agro-census and the spatial extent of rivers and roads to evaluate whether the designation of SURs reduces fire occurrence in the Brazilian Amazon. Specifically, we ask (1) a. Is SUR location (i.e., de facto) or (1) b. designation (i.e. de jure) the driving factor affecting performance in terms of the spatial density of fires?, and (2), Does SUR creation affect fire management (i.e., the timing of fires in relation to previous rainfall)? We demonstrate that pre-protection baselines are crucial for understanding reserve performance. We show that reserve creation had no discernible impact on fire density, and that fires were less prevalent in SURs due to their characteristics of sparser human settlement and remoteness, rather than their status de jure. In addition, the timing of fires in relation to rainfall, indicative of local fire management and adherence to environmental law, did not improve following SUR creation. These results challenge the notion that SURs promote environmentally sensitive fire-management, and suggest that SURs in Amazonia will require special attention if they are to curtail future accidental wildfires, particularly as plans to expand the road infrastructure throughout the region are realised. Greater investment to support improved fire management by farmers living in reserves, in addition to other fire users, will be necessary to help ameliorate these threats.


Subject(s)
Conservation of Natural Resources , Fires/prevention & control , Humidity , Tropical Climate , Brazil , Geography , Humans , Population Density , Rain , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...